
Accessing and Distributing Streaming Events on DHT-based Systems

M. Milanesio, G. Ruffo
Dip. di Informatica - Università di Torino

{milane, ruffo}@di.unito.it

F. Ricchiuti, D. Albertin
CSP - Torino

{ricchiuti, albertin}@csp.it

Abstract

In this paper we present a time sensitive content distribu-
tion system under implementation with the following inno-
vative features: (a) events can be accessed and distributed
using a fully decentralized DHT-based platform, (b) the
bootstrap problem is solved by means of a permanent core
network made of always alive nodes, (c) the streams are
served through a forest of collaborating nodes interested in
the events, by means of a topology independent from the one
of the underlying DHT structure.

1 Introduction

There are two main categories in which the Content
Distribution studies can be divided: we have infrastructure-
based content distribution (e.g., the Content Delivery
Networks) and peer-to-peer content distribution (e.g.,
Gnutella, Splitstream and CoolStreaming).
Peer-to-peer systems such as Gnutella depend on little or
no dedicated infrastructure: in our specific case, talking
about peer-to-peer based systems, in live or on-demand
streaming content distribution, cannot be separated from
talking about Application Level Multicast and structured
overlay networks (i.e., DHT-based p2p systems). This
well-formed structure is the base layer of our framework.

1.1 Roadmap

In Section 2 we present the state of the art in peer-to-peer
service oriented frameworks and applications. Our proposal
is entirely based on a DHT layered architecture, and it is
presented using a general framework (formalized in Section
3). Our content distribution schema is designed in Section
4, while implementation details are showed in Section 5.
The conclusions are given in Section 6.

2 Related Works

Structured peer-to-peer overlay networks (e.g., Chord
[16], Kademlia [10] or Pastry [14]) are an efficient solution
for querying and retrieving resources spread between the
peers, as they provide a good level of scalability and
robustness to frequent attacks and common problems in
unstructured peer-to-peer systems (e.g., [5][1][6]).
Distributed hash tables (DHTs), which represent the routing
infrastructure of the structured peer-to-peer networks, are a
class of decentralized distributed systems that partition the
ownership of a set of keys among participating nodes, and
can efficiently route messages to the unique owner of any
given key. Usually, the owner of the key (or, the peer who
is responsible for that key) is a specific peer (or a set of
peers, due to replication policies) whose unique identifier
is “closer” to the key, according to some metric depending
on the algorithm: this association is possible since resource
and peers are indexed in the same identifier space. This
approach to routing (namely, the key-based routing) leads
to a cost for the message forwarding that is logarithmic
[16] in the size of the network (i.e., the number of nodes).
Unfortunately, key based routing of Distributed Hash
Tables is simple when keys are known in advance, but this
cannot be always assumed at the service level. In current
working systems, many solutions have been adopted. In [8],
authors point out what are the main difficulties in querying
the system using only the exact match lookup facility, and
in [7] an XML name space schema is proposed for querying
resources indexed in the DHT system. Emule’s1 latest
versions support a Kademlia-like DHT, known as KAD.
For querying resources on this DHT, the Emule client
parses the query string: through a hash function a different
key is calculated for each substring. On the other side, as a
resource is inserted in the system, a set of meta-information
is calculated and inserted with the specific key.

Peers involved in the structured peer-to-peer system join
a muliticast group on which the service (identified by a
stream, live or on-demand) is propagated.

1http://www.emule-mods.de

1

We briefly describe our domain as an abstraction of a
generic Distributed Hash Table (DHT), where application-
specific objects are mapped to a subset of active nodes. The
number of replica reflects the application’s desired degree
of replication for that object. Objects can be inserted as a
pair <key, value>, where the key is the identifier of
the object (i.e., value). Thus, we need to map the items
of three different sets (i.e., nodes, resources (or, even, val-
ues) and index keys) into the same identifier space, in order
to build up our framework and to use the routing mecha-
nism of the DHT. For doing this, we can define two (hash)
functions H1 and H2 that map nodes and keys in the same
identifier space2. We have also to define the subset of active
nodes in order to build the graph defining the overlay topol-
ogy. Each node in the active node subset is responsible for
a set of key identifiers, so we need also a function that maps
the identifier of a key to the set of active nodes responsi-
ble for it. Resources can be inserted as well as accessed by
routing a DHT specific message, using the object identifier
as the key.

2.1 A DHT example: Pastry

Here we briefly discuss about Pastry [14], as we used
this overlay network for implementing a prototype for our
framework.
Each Pastry node has a unique, 128-bit nodeId. The set
of existing nodeIds is uniformly distributed; this can be
achieved, for instance, by calculating the nodeId on a se-
cure hash of the nodes IP address. Given a message and a
key, Pastry reliably routes the message to the Pastry node
with a nodeId that is numerically closest to the key, among
all live Pastry nodes. In a Pastry network with N nodes, Pas-
try can route a message to any node in less than �log2bN�
steps (with b being a configuration parameter).
The identifiers of nodes and resources (i.e., nodeIds and
keys) are represented through sequences of digits with base
2b. Pastry routes messages to the node whose nodeId is
numerically closest to the given key: in each routing step,
a node normally forwards the message to a node whose
nodeId shares with the key a prefix that is at least one digit
(or b bits) longer than the prefix that the key shares with the
present nodes id. If no such node is known, the message is
forwarded to a node whose nodeId shares a prefix with the
key as long as the current node, but is numerically closer to
the key than the present nodeId.
Each node maintains a routing table of �log2bN� rows with
2b−1 entries each row. With concurrent node failures, even-
tual delivery is guaranteed unless l / 2 or more nodes with
adjacent nodeIds fail simultaneously (l is an even integer
parameter).

2Note that many times we have that H1 = H2 = SHA1.

Figure 1. Routing in Pastry from node 65a1fc
of a message with id=d46a1c

Given a row n, each entry in the routing table refers to
a node whose nodeId matches the present nodes nodeId
in the first n digits. The uniform distribution of nodeIds
ensures an even population of the nodeId space, making
only the first �log2bN� rows to be populated.
In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set, i.e., the set of nodes
with the l / 2 numerically closest larger nodeIds, and the l /
2 nodes with numerically closest smaller nodeIds. In each
routing step (as in Figure 1), the current node normally
forwards the message to a node whose nodeId shares with
the key a prefix that is at least one digit (or b bits) longer
than the prefix that the key shares with the current nodeId.
If no such node is found in the routing table, the message is
forwarded to a node whose nodeId shares a prefix with the
key as long as the current node, but is numerically closer
to the key than the current nodeId. Such a node must exist
in the leaf set unless the nodeId of the current node or its
immediate neighbor is numerically closest to the key, or l /
2 adjacent nodes in the leaf set have failed concurrently.
Pastry’s routing infrastructure maintains several locality
properties, i.e., the proximity metric is taken into consider-
ation when a message is routed. The proximity metric is a
scalar value that reflects the distance between any pair of
nodes (e.g., RTT). Two of most important Pastry’s locality
properties are the so-called short routes property, which is
concerned with the total distance that messages travel along
Pastry routes, and the route convergence property, which is
concerned with the distance traveled by two messages sent

to the same key before their routes converge.

Several applications and distributed systems are built on
top of Pastry. Examples are Scribe [4], a distributed event
notification infrastructure; Past [15], a distributed storage
system and Splitstream [3], a streaming application that
uses Scribe as a application level multicast for multimedia
content delivering.
The Pastry’s API provides all the functions for managing
the different layers on top of it: from the routemsg(Key
k) that perform the key based routing, to Past’s level in-
sert(PastObject obj) and lookup(PastObject obj) for storing
and retrieving the inserted objects (e.g., files).

2.2 Applications on top of DHTs

Work on Application Level Multicast (e.g., Scribe [4])
is directly relevant to the live streaming aspect of our
framework. There are two general approaches in building
the Application Level Multicast: tree-building (e.g., Scribe)
and flooding (e.g., CAN-Multicast [13]). In the first case, a
single overlay network is built and each multicast group is
defined via a spanning tree on it, while in the second each
group is defined by a different overlay network, and all
the routing information of the overlay network are used to
broadcast multicast messages.
Coolstreaming [17], a totally distributed streaming plat-
form for live events with many interesting features like the
buffer map representation, and SplitStream [3], based on
the Application Level Multicast proposed in Scribe, are
just two of the possible approaches to the distribution of
streaming media content. A key distinction of our work,
for example w.r.t. SplitStream, is between forwarder nodes
and users: the first join the group but they are not interested
in the service, so they do not forward the payload but
only service messages, while the latter are group members
organized in a tree structure that forward the payload each
other.

In 2002 Microsoft Research presented CoopNet [12],
combining both aspects of content distribution mentioned
before. The Cooperative Network of Coopnet addresses the
problem of overloaded servers, having its client cooperating
with each other to distribute content via caching schemas.
The framework presented here has been introduced in a
previous work [11] consisting in an application in the e-
learning domain. The implemented application is fully in-
tegrated and interoperable, and it is currently under testing
on PlanetLab.

3 DHT-Service: inserting and searching
structured information

We used FreePastry API for implementing the DHT
(Pastry) and the multicast (Scribe) layer, while, for storing
the XML document (see 3.1), we used PAST.
This multiple layer framework is depicted in Figure 2. Each
peer takes part in the framework through different levels.
The base layer, of course, is the real network topology, since
it joins a distributed system. The DHT layer (performed by
the FreePastry API) offers primitives for routing messages,
assigning identifiers, retrieving values represented by keys
(i.e., Pastry); for managing groups of peers in a multicast-
like way and routing messages to groups instead of to peers
(i.e., Scribe); for storing the <key, value> mappings
and the XML documents (i.e., Past).
Peers from the multicast group organize themselves in a
graph (i.e., a forest) through which the stream is propagated
(as explained in Section 5).

Figure 2. Relationship between different lay-
ers.

This layered framework allows to store informations in
way such that the value associated to a key will be the
key for another layer (see section 3.2).

3.1 Framework description

Each node using this framework (namely, DHT-
Service3) has to store locally an XML name space defining
the tags used in our message description language. Mes-
sages are simply resources that can be published in (and
retrieved from) the overlay network. Each message is split
in three tags, i.e., an header, a body and a signature (see
Fig. 3).

3The name is given in contrast to the Web Services framework, where
addressing and discovery of services are made by means of a central regis-
ter server (e.g. UDDI registries).

resource

<DHT Resource>
<Header>

<tag1>...</tag1>
<tag2>...</tag2>
<tag3>...</tag3>

</Header>

k
H2−→ idk

<Body>... </Body>
<Signature>...</Signature>

</DHT Resource>

Figure 3. The Resource XML template

The main idea is that the header contains information
knowable a priori, and that every user can build them by her
own. The header is the key for the message, and it is passed
to the hash function to obtain a key identifier. With such
a key, it is possible to insert and to retrieve the associated
resource, i.e., the body of the message, that contains further
information.

3.2 Iterative key-based search/route

One of the most important problem to solve when using
a Distributed Hash Table is the exact-match query method
needed in the key based routing. This is easy when keys are
known in advance, but it cannot be always assumed at the
service level. It is important to find a way to get the exact
key a resource is indexed with, in order to be able to send
the appropriate query to the DHT-layer.
Using an XML name space, our key (i.e., the identifier used
to index a resource) is the header of the XML document
with the “ID card” of the indexed service (see Figure 3).
What it must be done is a key structuring process in order
to make peers able to calculate the exact key in terms of
subsequent results.
Let’s see in details:
Insertion: A source peer wanting to advertise his stream
events sends a insertion message to the network. First, he
has to access the XML template (see Figure 3) for publish-
ing the content information, in order to insert the correct
data using a well-formed set of tags.
Included in the body of the XML document there must
be, among other information, the identifier of the multi-
cast group (i.e., the groupID), on which the content is dis-
tributed. Information in the header can contain generic in-
formation (e.g., Streaming Events, as in Figure 4), as well
as specific information (e.g., a given GroupID, as in Figure
5) that users accessed by way of previous queries in the it-
erative search process. If a message with the same header
has already been inserted, the nodes responsible for replicas
will check the credentials of the publisher and then update
the resource (e.g., inserting other Stream tags in the Stream-
ing Events message).
Discovery and Join: A peer who wants to join a specific
multicast group, has to know the given groupID. To ob-

tain this, it has to get the XML document indexed by the
source peer. The peers should start then with a well-formed
query, requesting the list of streaming events available at
a certain moment. Suppose this query to be the string
Streaming Events. Given the string to a secure hash
function, the function will return the unique identifier asso-
ciated, namely ids. The peer can hence access the searched
message with key ids, containing all the available informa-
tion on the stream events (see Figure 4). This document
provides the list of services, given with the specified Ids. In
general, after a low constant number of lookups, the peer
is able to build up the complete header that, once lookup’d,
will lead the peer to a document similar to the one in Fig. 5.

<DHT Streaming Events>
<Header>

<title>Streaming Events</title>
</Header>
<Body>
<Stream>
<Name>Movie One</Name>
<Id>Adsof1023</Id>
</Stream>
<Stream>...</Stream>

...
</Body>
<Signature>...</Signature>

</DHT Streaming Events>

Figure 4. Streaming Events

<DHT Resource>
<Header>

<Name>Movie One</Name>
<Type>mpeg4</Type>
<Provider>MyProvider</Provider>

</Header>
<Body>
<GroupId>1234wer093</GroupId>
<Time>2/5/2006 20.00 C.E.T.</Time>

<Other>...</Other>
</Body>
<Signature>...</Signature>

</DHT Resource>

Figure 5. Resource

3.3 Bootstrap node

A second key problem in DHT based system is the boot-
strap node. A peer, in order to join a structured overlay, has
to know at least one node already of the network [2]: the
problem arises from the fact that no central server is avail-
able for granting connectivity (since the system is totally
distributed), and there are no flooding mechanisms as the
one used in the unstructured p2p systems (e.g., Gnutella).
As far as current p2p systems do not provide a good solution
to this problem, in the mentioned article authors presented
a joining method based on the presence of a Certification
Authority giving a trusted nodeID for joining a universal
ring, and, from there, looking up the specified service. Our

framework distinguish the peers involved into two encapsu-
lated networks (see Figure 6): a Core Network and a Edge
Network. Nodes in the core network run a lighter version
of the system stack, that only forward and store application
messages. Secondly, they provide the access point to the
DHT for the peers implementing the whole application. On
the contrary, users and service providers run nodes in the
edge network.

Figure 6. Layered architecture

4 Streaming through a collaborating forest of
nodes

We can define a bijection between the set of different
segments in which a stream is divided (s1, ..., sn) and the
elements of an array (Arr[1], ..., Arr[n]). Having this on
each peer in the multicast group, then if (Arr[i] = 1),
the segment si was already received by the node. This
approach is similar to the buffer map representation of
Coolstreaming [17]. Each element of the array contains
the segments needed by the node, and all group members
exchange this array with their partner periodically, granting
the possibility of setting a scheduling in terms of peers and
segments.

Moreover, a chocking procedure like BitTorrent’s one
[9] is necessary to make the peers behave better with a
better QoS on the system since, for example, TCP conges-
tion control behaves very poorly when sending over many
connections at once. On the other side, a choking procedure
makes each peer able to use a tit-for-tat algorithm to ensure
a consistent download rate to the peer. There are several
criteria a good choking algorithm should meet: it should
cap the number of simultaneous uploads for good TCP
performance and it should avoid the so-called fibrillation
(i.e., a quick choking and “unchoking” of the bandwidth
capacity). Moreover, it should be granted a periodic test on
alternative paths for the messages, in order to find out if
they might be better than the currently used ones.

In our implementation, we have a source peer which has
some content (live, or on-demand) to distribute, and that

represents the root of the forest. Peers connect each other
and find the Multicast Group via the DHT’s procedures.
A subset of group members join together a tree structure
and start receiving/forwarding the stream. The reader
should notice that this tree is similar, in some ways, to the
SplitStream one (and also, but less than the former) to the
CoopNet tree.
We can summarize our approach in terms of differences
with the previous cited works. Compared with SplitStream,
forwarders peers are only interested in message routing,
not in transferring the payload, as it happens in CoopNet.
Compared with CoopNet, where peers are associated in a
tree structure, we have a forest, i.e., a strongly connected
graph in which group partners will exchange their buffer
maps and messages in a BitTorrent-like manner (as Cool-
Streaming does). Finally, compared with CoolStreaming,
we put an intermediate application level multicast layer
granting the possibility of having, among other features, a
restricted access to some specified streams.

All the affinities and the differences within our frame-
work wrt other applications can be summarized as in table
1.

5 Implementation details

The content distribution tool is currently under im-
plementation. The language we chose is Java, due to its
portability and to the fact that the FreePastry API is coded
in Java. The information given in this section are subject to
change, even if the forest topology depicted in the previous
section is the target solution.

In our implementation, the group joining and the retriev-
ing of the XML document are done at the same time. The
connection parameters (e.g., IP/Port of the root of the tree)
are packed in a “Content” object, sent to the peer searching
for the associated key.

A join request arrives to the root that, depending on the
available bandwidth, allows (accept) or denies (refuse) the
incoming connections. In case a call is refused, it will be
forwarded to one randomly chosen son: by doing this, a
balanced growth of the tree is achieved. As soon as the tree
starts to grow, the root start streaming the content. However,
this joining procedure will became outdated when the scribe
layer will be fully integrated to our system: the root will
not be involved to every join request, because forwarders
will help new nodes to discover other peers participating
the same event.
We suppose that a node wanting to receive the stream will
not leave the forest until the transmission ends. Anyway,
peer failures are possible. When a node that is receiv-

Node Forest Buffer Map Time Sensitive
Forwarding Structure Representation Streaming

BitTorrent X X
SplitStream X X X
CoopNet X X
CoolStreaming X X X
Our Appl. X X X X

Table 1. Our framework wrt other Applications.

n.join(Stream s, Node root)

if (accept)
//start receiving from s from root
n.startReceive (Stream s, Node root)
if (refuse) {

Node n2 = n.chooseRandomSon();
n.join(Stream s, Node n2);

}
...
catch(EndOfReceiving Exception) {

for each c in S //set of node sons
/*stop sending stream to each
*node c the node n was serving
*/
n.StopTransmission(Node c);

n.join(Stream s, Node root);
}

Figure 7. Pseudo-Code for the Join Operation
and the Restore procedure

ing/transmitting to a given peer fails, the leave procedure is
called to re-establish the correct behaving of the tree: peers
that were streaming to the failed node just stop the trans-
mission to that node; on the contrary, peers that were re-
ceiving from the failed node recognize the anomalous end
of transmission after a time-out interval. If that node was
the only transmitting peer, the orphans start with a new
join operation, in order to find out their new position in
the tree. If other nodes are still transmitting, then the re-
ceiving peers re-negotiate bandwidth and missing segments
with the group.
In case of massive failures, it is strictly necessary to avoid
too many join messages to the source: to do that, each node
will wait for a random time before sending a new join re-
quest.

In figure 8 a simple scheme of our application is given.
A Java module, namely the Data Transfer Module

7, manages the structure of the distribution topology and
the data streaming. After joining the forest, a peer creates
its own Partner Table, i.e., a dynamic table containing a
list of nodes that the peer is transmitting to (and receiving
from), with their attributes (e.g., IP address and listen port).
Partner Table manages the insertions and the removals of

Figure 8. Application Modules.

partner nodes. Data transfer is made through a buffered
stream. Initially the peers exchange some information and
later they exchange segments of the audio/video stream.

Figure 9. Buffered Stream.

Finally, the Control Module is split into two different
threads, working together: the ReceiveFile and the Con-
trolThread. The first allows to receive the data in prede-
fined buffer and then it appends the buffer to the tempo-
rary output file 9. This file, during this procedure, is sent
as input to an external player which allows the user to see
the stream. The second thread listens to the control port on
which, at the end of transmission, the receiving peer sends
an End-Of-File string that determines the effective end of
that specific segment.

In order to playback the received stream, we use an ex-

ternal player. Our choose has been VLC MediaPlayer4, be-
cause it is completely open source, and there is a lot of tech-
nical support available on the web. VideoLan is also multi-
platform and it is able to playback quite all multimedia for-
mat. VideoLan is also completely controllable from an ex-
ternal application, thanks to its complete set of command-
line options. There is no limitation in our implementation
about the use of VLC so any other multimedia player can be
used, the only requirement is that the player should be able
to accept the file from the command line interface.

6 Conclusion and Ongoing Work

In this article we introduced a framework for publish-
ing and retrieving multimedia content distribution services,
built on a totally distributed overlay network. Using a DHT
to address the peers and the resources, and using a Multi-
cast layer to build our groups, we can separate the specific
functions of each layer. This paper characterizes basically
our approach to the problem of building a Streaming Appli-
cation on a DHT.

7 Acknowledgements

This work, jointly developed by CSP Sca.r.l. (Turin,
Italy) and the Department of Computer Science at the Uni-
versity of Turin, has been financially supported by the
Italian FIRB 2001 project number RBNE01WEJT “Web
MiNDS”.

References

[1] E. Adar and B. A. Huberman. Free riding on gnutella. First
Monday, Sept. 2000.

[2] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
One ring to rule them all: Service discovery and binding
in structured peer-topeer overlay networks, 2002.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
content distribution in a cooperative environment. In Proc.
of IPTPS’03, February 2003.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-
stron. Scribe: A large-scale and decentralised application-
level multicast infrastructure. IEEE Journal on Selected Ar-
eas in Communication, October 2002.

[5] N. Daswani and H. Garcia-Molina. Query-flood dos attacks
in gnutella. In Proc. of the 9th ACM conference on Computer
and communications security, pages 181–192. ACM Press,
2002.

[6] N. Daswani, H. Garcia-Molina, and B. Yang. Open prob-
lems in data-sharing peer-to-peer systems. In ICDT 2003,
2003.

4http://www.videolan.org

[7] P. Felber, E. Biersack, L. Garces-Erice, K. Ross, and
G. Urvoy-Keller. Data indexing and querying in dht peerto
-peer networks, 2004.

[8] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica. Complex queries in dht-based peer-to-peer
networks, 2002.

[9] I. B. R. in BitTorrent. http://www.bittorrent.com/.
[10] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-

peer information system based on the xor metric. In Proc. of
IPTPS02, March 2002.

[11] M. Milanesio and G. Ruffo. Publishing, retrieving and
streaming lectures via application level multicast. In Proc.
of the IEEE ICIW’06, 2006.

[12] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sri-
panidkulchai. Distributing streaming media content using
cooperative networking. Technical Report MSR-TR-2002-
37, Microsoft Research, Redmond, WA, 2002.

[13] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. LNCS, 2233, 2001.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. of IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–
350, November 2001.

[15] A. I. T. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proc. of Symposium on Operating Systems Princi-
ples, pages 188–201, 2001.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. of the 2001 Conf. on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 149–160. ACM Press, 2001.

[17] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum.
Donet/coolstreaming: A data-driven overlay network
for live media streaming. In Proc. of IEEE INFOCOM’05,
March 2005.

